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A Spatial Analysis of Health and Longevity of Taiwan People 

 

Abstract 

Initiated in 1995, Taiwan’s National Health Insurance (NHI) program now covers over 99.6% 

of its residents, ensuring widespread medical access. Despite this, regional disparities in 

medical resource allocation persist. This study investigates the potential urban-rural divide in 

life expectancy and healthcare utilization. Drawing data from the Ministry of the Interior 

(population registration records), NHI Research Database (medical utilization), and Ministry of 

Health and Welfare (leading causes of death), we employ spatial analysis, visualization tools, 

and the standardized mortality ratio for assessing regional disparities. Our findings reveal 

distinct regional mortality differences in Taiwan, with lower rates in northern counties and 

higher in mountainous regions. However, healthcare utilization shows no significant regional 

variations. Notably, patterns of overall mortality rates and primary death causes demonstrate 

spatial clustering. 
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1. Introduction 

Since the end of World War II, Taiwan has undergone a rapid demographic transition. 

Economic growth and medical advancements have been pivotal in driving these demographic 

changes, which have led to steep reductions in fertility and mortality rates. Specifically, Taiwan’s 

total fertility rate plummeted in the 1960s, dropping below the replacement level of 2.0 in 1985 

and stabilizing between 1 and 1.2 after 2000. These declining fertility rates have transformed 

family structures, with the core family (a couple with or without children) becoming predominant. 

Traditionally, the elderly are cared for by family members; however, alternative arrangements are 

now necessary. Concurrently, reduced mortality rates point to an extended life expectancy. 

Intriguingly, Taiwan’s trend in life extension differs from European and American countries, 

which have been decelerating recently. Since 1960, the life expectancy of Taiwan residents has 

grown by approximately 18 years, increasing steadily at a rate of 0.2 and 0.3 years annually since 

the early 1980s (Figure 1, with lines derived via locally weighted scatterplot smoothing, or 

LOWESS).  

 

 

Figure 1. Annual Increment of Life Expectancy in Taiwan 

 

Given the low fertility and mortality rates, the aging of Taiwan’s population is inevitable. The 

percentage of individuals aged 65 and over is soaring: from 6.2% in 1990, it is projected to hit 

20% by 2025 — a threefold increase in just 35 years (Source: National Development Council). 

Addressing the challenges posed by an aging demographic, Taiwan has rolled out and is further 
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developing various social insurance programs. The National Health Insurance (NHI) stands out as 

the most renowned, ensuring healthcare access for all, irrespective of socio-economic status. 

There’s a consensus that the NHI has bolstered the health and lifespan of Taiwan’s populace 

(Chang, 2012). Past research indicates that the NHI has diminished health disparities, with life 

expectancy rising more significantly for those with initially higher mortality rates (Wen et al. 2008). 

Keng and Sheu (2013) drew parallels, observing the most pronounced benefits among the least 

healthy elderly in areas such as mortality and self-assessed health. They also determined that the 

NHI enhances longevity and bridges the mortality gap between education levels, though it does 

not impact functional limitations uniformly. 

Interestingly, regional differences in mortality in Taiwan seem to overshadow educational 

disparities. For instance, the male life expectancy in Taipei City (Taiwan’s capital) was 81.43 in 

2020, nearly nine years longer than in Taitung County (72.46) — a remote eastern region with a 

smaller populace. The disparity in female life expectancy between these regions is narrower, at 

about 7.6 years. This variation can largely be attributed to resource abundance in metropolitan 

areas, which offers superior medical care and employment prospects. In line with prior studies, 

examining the influence of Taiwan’s social insurance on mortality becomes pertinent, especially 

in the wake of over 25 years of NHI implementation. Our goal is to ascertain if regional lifespan 

disparities have grown or diminished over time and assess if these findings can guide public policy 

and resource allocation decisions.    

In this study, we apply spatial analysis tools to evaluate the health of Taiwanese individuals 

using data from the NHI Research Database (NHIRD), regional population figures from the 

Ministry of the Interior, and cause-of-death statistics from the Ministry of Health and Welfare. We 

aim to identify potential urban-rural disparities in life expectancy and medical utilization at both 

county and township levels, and to track how regional mortality disparity evolve. Given that no 

official estimates exist for life expectancy at the township level, we use the standardized mortality 

ratio (SMR) as the mortality measure. Additionally, we introduce two types of Geographically 

Weighted Regression (GWR) to study the relationship between mortality rates and healthcare 

utilization. 

This paper is structured as follows: In Section 2, we detail our data and methodology, 

emphasizing the use of spatial analysis tools to determine whether regional mortality rates conform 

to spatial homogeneity conditions. Section 3 delves into the spatial characteristics of regional 

mortality rates and medical utilization. In Section 4, we shift our focus to an in-depth analysis of 

mortality rate trends, also integrating the application of GWR to township-level data to probe the 
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relationship between mortality rates and medical utilization. Finally, Section 5 offers our 

conclusions, discussing the spatial attributes of Taiwanese health. 

 

2. Data and Methodology  

Taiwan launched universal national health insurance in 1995, and currently, more than 99.6% 

of Taiwan’s residents (population over 23 million) are enrolled in this program. The density of 

medical institutions in Taiwan is quite high, with over 20,000 medical institutions, including 

approximately 500 hospitals (with beds) and 20,000+ clinics (without beds). Every township has 

at least one medical institution and Taiwanese residents have good healthcare accessibility. The 

NHI has become a part of everyday life in Taiwan.  

The Taiwanese government has collected health insurance-related data (e.g., inpatient and 

outpatient claims) from the NHIRD (Hsieh et al. 2019; Lee et al. 2021). Many researchers have 

used the NHIRD to study the health and medical utilization of the Taiwanese people (Hsing and 

Ioannidis 2015; Yue et al. 2018). We focus on outpatient records, including the number of visits, 

medical costs per visit, and total medical expenses per year. However, owing to the limitations of 

data acquisition, we can only assess NHI data from 2005 to 2013. 

To analyze regional longevity, we employ two datasets provided by the Taiwanese 

government. One represents the household registration segmented by age and gender, while the 

other details all-cause and leading-cause mortality rates. These datasets originate from the Ministry 

of the Interior and the Ministry of Health and Welfare, respectively. We compare the all-cause and 

leading-cause mortality rates in different regions (with respect to counties and townships). 

Although the Taiwanese government regularly publishes official statistics on life expectancy, this 

data is available only at the national and county levels. Therefore, to differentiate longevity across 

counties and townships, we utilize age-specific mortality rates. Given the extensive range of age 

groups, our study adopted mortality indices for regional comparisons. To mitigate the influence of 

age distribution, we opted for standardized indices, which we will define subsequently. 

 In addition to spatial analysis tools, we apply Exploratory Data Analysis (EDA) to explore 

the health of Taiwanese residents at the county and township levels. EDA leverages statistical 

graphics and data visualization to dissect primary data characteristics without delving into formal 

modeling (Tukey 1977). Representing an interactive endeavor, EDA allows researchers to deploy 

a suite of analytical techniques, including data cleaning and aggregation. It’s an essential 

preliminary step in data analysis. Despite its significance, EDA is complex and demands robust 

experience, domain knowledge, and sharp analytical skills. With the advent of Big Data, the 

prominence of EDA has surged (Milo and Somech 2020). Scholars have employed EDA to unearth 
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data errors and decipher correlations between pertinent variables. As a case in point, Indrakumari 

et al. (2020) utilized EDA on data concerning heart stroke and vascular disease. Their findings 

identified four classifications of chest pain, a vital variable in recognizing heart diseases.  

There are two types of mortality standardization: direct and indirect. In this study, we chose 

the Standardized Death Rate (SDR) and Standardized Mortality Ratio (SMR), which are direct and 

indirect methods, respectively. Both standardization methods require a standard population. The 

SDR adjusts the age structure of the target population in the same manner as that of the standard 

population:  

SDR𝑗 =
∑ 𝑃𝑥

𝑠×𝑚𝑥
𝑗  

𝑥

𝑃𝑠 ,     (1) 

In this equation, Ps represents the size of the standard population, 𝑃𝑥
𝑠 denotes the size of age x in 

the standard population, and 𝑚𝑥
𝑗
 indicates the central mortality rate of age x in population j. The 

SDR is a weighted average of the age-specific death rates of the standard population and is 

frequently expressed as the number of deaths per 100,000 individuals.  

On the other hand, SMR is the most popular indirect method, often used in epidemiology, and 

it is defined as follows: 

SMR𝑗 =
𝐷𝑗

∑ 𝑃𝑥
𝑗
×𝑚𝑥

𝑠  
𝑥

,     (2) 

In this equation, Dj represents the observed number of deaths for population j; 𝑃𝑥
𝑗
denotes the 

population size of age x for population j; and 𝑚𝑥
𝑠  indicates the central mortality rate of age x for 

the standard population. SMRj is used to compare the mortality rates of population j with those of 

the standard population; if SMRj = 1, the overall mortality rates of population j are approximately 

the same as those of the standard population. Similarly, if SMRj is smaller or larger than one, this 

implies that the overall mortality rates of population j are lower or higher than those of the standard 

population, respectively. The possible range of SMRj is (0, ).  

We consider two types of spatial analysis: one for judging spatial homogeneity and the other 

for describing the spatial correlation between the objective variable and explanatory variables. 

Moran’s I (Moran, 1950) is the most popular index for measuring spatial autocorrelation, and is 

defined as follows: 

𝐼 =  
𝑛

∑ ∑ 𝑤𝑖𝑗𝑗𝑖
×

∑ ∑ 𝑤𝑖𝑗𝑗𝑖 (𝑥𝑖−𝑥̅)(𝑥𝑗−𝑥̅)

∑ (𝑥𝑖−𝑥̅)2
𝑖

      (3) 

In this equation, xi denotes the observed value of region i,  𝑥̅  represents the average, wij is the 

weight between regions i and j, and n indicates the number of spatial units indexed by i and j.  
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Moran’s I is usually used to measure spatial autocorrelation and it ranges between −1 and 1. A 

positive Moran’s I value signifies positive spatial autocorrelation. The closer this value is to one, 

the stronger the relationship between neighboring regions. If Moran’s I significantly deviates 

from 0, it suggests the presence of hotspots, which are areas with elevated mortality rates, or 

potential spatial correlations. Moran’s I offers reliable testing power when evaluating spatial 

homogeneity (Bivand et al. 2009). Yet, the efficacy of this testing power can be swayed by 

factors like population size and the way “neighborhood” is defined (Oden 1955). In spatial 

metrics such as Moran’s I, contiguity-based spatial weights are frequently utilized. Contiguity 

here refers to two spatial units that share a boundary. The “Queen” and “Rook” are prevalent 

contiguity measures, named after their analogous movements on a chessboard. The number of 

neighboring units identified by the “queen” method will always be the same as or exceed those 

identified by the “rook” method. Hence, the “queen” approach encapsulates more spatial 

information, resulting in greater analytical power. For our analysis, we’ve selected the “queen” 

method for determining contiguous neighbors. 

GWR can be treated as a spatial version of the linear regression model, with a dependent 

variable y expressed via a linear function of a set of p independent variables, 1, 2, , px x x , or as 

follows: 

0

1

Y
p

i i ik ik i

k

x
=

= + +                  (4) 

In this equation, ik and ikx represent the parameters and observed values of the independent 

variables k ( 1, , )k p= , whereas, i  denotes the error terms at location i (i = 1, 2, … n). In other 

words, each location had its own regression model in the GWR model. In addition, i is generally 

assumed to follow a normal distribution with zero mean and constant variance
2 (i.e., 

2~ (0, )i N  ), similar to that in linear regression. As there are more parameters than observations 

in GWR, the method of parameter estimation is slightly different. We posit that nearby data of 

each location usually have similar attributes; thus, the Weighted Least Squares (WLS) method is 

suitable for parameter estimation, with different weightings for each location. 

The coefficient estimates of all GWR variables are obtained from a moving data window, and 

all parameter estimates are derived from a fixed range of observations. The optimal width (i.e., 

bandwidth) of the moving windows in a GWR is usually determined by cross-validation; however, 

the GWR estimation can still be unsatisfactory and produce a distorted relationship. Most 

modifications to GWR are based on the selection of bandwidth, and choosing different bandwidths 
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for each independent variable is a possible alternative approach. Multiscale geographically 

weighted regression models (MGWR) and conditional geographically weighted regressions 

(CGWR) are two methods for adjusting the bandwidth (Fotheringham et al., 2017; Leong and Yue, 

2017).  We apply the original GWR and CGWR to Taiwanese data and compare their estimation 

results.  

 

3. Exploratory Data Analysis of County Data 

In this section, we apply EDA tools (especially visualization tools) to explore the spatial 

attributes of mortality and healthcare utilization among Taiwanese residents. Taiwan has 20 

counties, 368 townships, and slightly more than 23 million people. In general, the population 

density of west coast townships is higher, and not many residents live in middle and eastern Taiwan 

or mountainous areas (Figure 3-1). For example, by the end of 2021, the most crowded township 

was Yonghe District (in New Taipei City), with over 36,000 people per square kilometer, and the 

least populated township was Taoyuan District (in Kaohsiung City), with only five people per 

square kilometer. The regional difference in population density is surprisingly large, 

approximately 7,000 times. Interestingly, Taiwan is not a big island (with an area around 36,000 

square kilometers) but the regional differences in mortality are quite significant, as detailed by the 

results generated using the SMR as an EDA tool. 
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Figure 3-1. Population Density of Taiwan Township (Unit: people per km2) 

Source: Wikipedia  

 

The boxplot of county-level SMR from 1974 to 2018 is depicted in Figure 3-2. Each year’s 

SMR uses that year’s national population as the standard. Counties with smaller populations, like 

Penhu and Taitung (100,000 to 220,000 residents), show more variations. Taipei City has the 

lowest SMR at about 0.8, while Taitung County peaks at around 1.3. This suggests that Taipei’s 

mortality rate is roughly 60% of Taitung’s. Significant SMR disparities also exist among the six 

major cities with populations over 2 million, as illustrated by female mortality rates in Figure 3-3. 

For instance, Taipei residents have a mortality rate about 70% of those in Kaohsiung. 
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Figure 3-2. SMR of Taiwan’s Counties (1974-2018) 

 

 

Figure 3-3. SMR of Taiwan’s Six Major Counties (1998-2018) 

 

EDA aids in hypothesis formulation and offers data collection guidance, vital for data analysis. 

The SMR highlights significant mortality disparities between counties, prompting exploration into 

associated factors. Initially, we sort the SMR by latitude, with Figure 3-4 presenting the 2020 

county SMR. Taiwan, positioned between 22.5°−25°N latitude and 119.5°−121°W longitude, 

experiences a subtropical climate in the north and tropical in the south. Lifespan often shows a 

negative correlation with temperature. This holds true in Taiwan, as mortality rates (SMR) in 

counties decline with increased latitude. Typically, northern counties (in green) register the lowest 

mortality rates, in contrast to the higher rates in southern and eastern (warmer) counties. Figure 3-
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4, a bubble plot, introduces a third dimension, population, to the scatterplot — a format the United 

Nations and OECD frequently utilize. Evaluating the 2020 SMR by population (Figure 3-5), we 

discern a negative correlation with population size. However, the association with population is 

slightly less pronounced than with latitude. Notably, the SMRs of major southern cities, Tainan 

and Kaohsiung, exceed those in northern non-major regions like Hsinchu City and Hsinchu County. 

 

 

Figure 3-4. County SMR and Latitude (2020) 

 

 

Figure 3-5. County SMR and Population (2020) 
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Figure 3-6. SDR of Different Regions (2014-2020) 

 

In the analysis mentioned, we could employ the SDR, though the relative disparities between 

counties appear less pronounced. However, the SDR facilitates more straightforward detection of 

temporal shifts in mortality. We base the standard population for SDR calculation on the World 

Health Organization’s WHO2000 (Ahmad et al. 2001). Figure 3-6 displays the SDR for four 

Taiwanese regions from 2014 to 2020. All counties present declining mortality rates, with similar 

rates of decrease. While regional mortality differences stand out, the rate of mortality changes 

across counties remains consistent. 

To probe the rate of change in mortality rates further, we might consider the correlation of 

county SDR across different years (Figure 3-7). The intent behind Figure 3.7 is to highlight the 

substantial correlation between the SDRs of any two given years, irrespective of gender. Although 

the correlation coefficients for females are slightly lower than for males, all values are close to or 

surpass 0.7, signaling a robust linear relationship. This suggests that county mortality disparities 

exhibit little variation over time, consistent with the observations from Figure 3-6. 
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Figure 3-7. Correlation of County SDR (2013-2020; Left: Male, Right: Female) 

 

 

Figure 3-8. Numbers of Outpatient Visit in Six Major Cities (2005-2013) 

 

Unlike mortality rates, county-level medical utilization does not show clear systematic trends 

with respect to counties. We use the number of outpatient visits in six major cities as an example 

(Figure 3-8). The number of outpatient visits is highly correlated with age and increases 

monotonically from ages to 25-29 to 80-84. In addition, age group 1-4 had the most outpatient 

visits among the younger age groups. However, the number of outpatient visits is not related to 

county. This pattern diverges from Figures 3-3 and 3-4, where major southern cities report elevated 

mortality rates. It’s important to mention that the results for outpatient visits span only from 2005 

to 2013 owing to constraints in accessing NHI data. 
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4. Spatial Analysis of Township Health and Mortality 

In the previous section, we explore the EDA of county-level data. Here, we apply spatial 

analysis to township-level data. The decision to forgo spatial analysis for county data stems from 

an insufficient number of data points (20 counties), while the township data, with 368 points, is 

ample. Using Moran’s I, we assess the spatial homogeneity of township mortality in 2020 (Figure 

4-1). Townships in central mountainous areas display elevated mortality rates, potentially 

indicating a hotspot or cluster. Both male and female cases have significant p-values for Moran’s 

I, revealing that the distribution of township SMR is spatially heterogeneous, suggesting spatial 

clustering. The disparity between townships with the highest and lowest SMR values, both for men 

and women, is pronounced, far exceeding county differences seen in Figure 3-2.  

 

 

Figure 4-1. Township SMR and Moran’s I (2020) 

 

Further, we apply Moran’s I to the SMR for five leading causes of death in Taiwan (Table 4-

1). All tests return significant Moran’s I values, negating the spatial homogeneity hypothesis. 

While spatial clustering of cancer mortality rates aligns with prior research (Hu and Lay, 2006), 

the findings for other primary death causes are unexpected. We theorize that certain areas may 

have environmentally related risk factors driving higher mortality rates, but this does not seem to 

apply universally. With traffic and falls accounting for approximately 45% and 20% of accidental 

deaths respectively, certain townships appear more susceptible to fatal car accidents. This 

necessitates further research into potential environmental risk factors for leading causes of death. 
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Table 4-1. Township SMR of Major Death Cause and Moran’s I (2020) 

SMR Moran’s I p-value 

Cancer 0.379 < 0.05 

Heart Disease 0.340 < 0.05 

Accident 0.275 < 0.05 

Cerebrovascular Disease 0.156 < 0.05 

Pneumonia 0.117 < 0.05 

 

 

Figure 4-2. Medical Utilization (SMR) and Moran’s I (2020) 

 

Adapting the SMR definition in Equation (2), we can also define standardized indices for 

medical utilization. For example, to acquire a standardized number of outpatient visits, we can use 

the number of total outpatient visits for population j to replace Dj, and the number of outpatient 

visits for people aged x in the standard population to replace 𝑚𝑥
𝑠 . To simply the discussion, we still 

use the term “SMR” for the standardized medical utilization. Moran’s I statistics for the number 

of outpatient visits, cost per outpatient visit, and total cost of outpatient visits indicates spatial 

homogeneity (Figure 4-2). Like the analysis at the county level, no obvious regional differences, 

in healthcare utilization at the township level, exist. 
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Figure 4-3. Parameter Estimates of CGWR Model 

 

We use township SMR as the target variable Y in the GWR analysis. We choose population, 

population density, number of hospitals (not clinics), number of beds, and medical utilization as 

independent variables (three variables in Figure 4-2). After a series of variable selections, we find 

that the population (X1) and number of outpatient visits (X2) are the most relevant variables; thus, 

we keep them in the GWR models. As stated previously, the GWR model assigns distinct 

coefficients to each region, allowing independent variable impacts to vary regionally. For 

example, the coefficient of population X1 (β1 in Figure 4-3) is negative and less on the east coast 

than the west coast. This signifies a more pronounced decrease in SMR value concerning 

population size on the east coast compared to the west coast. 

The R2 (or R-squared) values of GWR and CGWR models are 0.84 and 0.94, respectively. As 

the fitted result of the CGWR is slightly better, we use it to explain the parameter estimation results. 

The estimated intercept is very close to the SMR (Figure 4-1) and townships in mountainous areas 

have higher mortality rates. The coefficient of population (1) is negative, indicating that a larger 

population leads to lower mortality, aligning with Figure 3-5. In addition, 1 increases from east 

to west, indicating that the marginal effect of the population is stronger in the east. However, the 

coefficient of the number of outpatient visits (2) is positive, indicating that more outpatient visits 

are associated with higher mortality and that its marginal effect is stronger in northeast townships.  

Residual diagnostics are performed to evaluate the GWR and CGWR models. To simply the 

discussion, we solely focus on the scatterplot of fitted values and standardized residuals, or 𝑦̂𝑖 vs. 
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𝜀𝑖̂ (Figure 4-4).  If there are too many outliers or extreme outliers (i.e., values that are too large or 

too small), the model may not be suitable. In particular, we often focus on standardized residuals 

larger or smaller than three, and the probability of observing these types of outliers is 

approximately 0.3% under the normality assumption. The GWR model has six outliers with values 

outside (−3, 3), and one outlier is close to six, suggesting that the GWR model requires some 

adjustments. By contrast, the CGWR model has three outliers outside (−3, 3) and no extreme 

outliers.  

 

 

Figure 4-4. Residual Plots of GWR and CGWR Models 

 

 

5. Discussions and Conclusion  

Regions across countries, even in smaller ones like Taiwan, exhibit variations in death rates. 

For men and women, the life expectancy gap at the county level approaches 9 and 8 years, 

respectively. As Taiwan’s government dedicates resources to bridging regional disparities, we 

anticipate a gradual reduction in these mortality differences. Recently, Taiwan implemented the 

National Health Insurance (NHI), a policy contributing to the extended life expectancy of its 

residents. Yet, the trajectory of regional disparity remains uncertain. To gain insight, we employ 

tools in EDA and spatial analysis, using data from the NHI Research Database and two other 

government sources.  

Our findings, through EDA, reveal persistent regional differences in mortality within Taiwan 

but no notable variances in medical utilization. Typically, mortality rates drop in northern regions 
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and escalate in mountainous territories. Areas with larger populations experience reduced 

mortality rates. For township-level data spatial analysis, consistent spatial clustering appears 

across overall and major causes of death. The consistency between EDA and GWR results boosts 

our confidence in the analysis. Our study’s empirical findings suggest potential hotspots with 

higher mortality risk in Taiwan. Furthermore, GWR models emphasize the influence of population 

size and outpatient visits on mortality rates, along with regional variances.  

Spatial analysis tools, primarily developed for regional exploration, can also chart mortality 

rate time trends using standardization indices such as SMR and SDR. A commonality in the 

mortality improvement trend across counties suggests that regional mortality differences persist. 

This finding prompts questions about resource allocation strategies. Should resources shift to high 

mortality areas or do existing policies suffice? The mortality rates are related not only to the urban-

suburban divide but also to geographical differences between the north and south. This suggests 

that policies should adopt a localized strategy to effectively address these disparities. For example, 

there are 23 medical centers with relatively abundant medicals resources, only two of which are 

not in the north or major cities. Also, persisting regional differences in mortality could lead to 

significant life expectancy gaps, presenting potential insurance risks for life insurers.  

The consistent trend in mortality improvement across counties can refine mortality models for 

Taiwan’s smaller areas. The Lee-Carter model, for instance, may produce skewed estimates for 

limited populations. Enhancing its accuracy might involve incorporating data from nearby counties, 

given the uniformity in mortality trends. Exploring this method’s feasibility remains a focus for 

future research. Moreover, adaptations, like a spatiotemporal modification of the Lee-Carter model, 

warrant consideration. 

Following the Personal Data Protection Act, Taiwan’s government revises the access 

guidelines to NHI data in 2018. Researchers now assess NHI data on-site at the Health and Welfare 

Data Science Center, Ministry of Health and Welfare. The NHI data for this study comes from 

before 2018, covering the period 2005 to 2013. Since the data does not receive updates, the medical 

utilization analysis might not reflect current trends. Efforts to incorporate NHI data post-2014 face 

challenges due to the new regulations that demand additional time, funds, and personnel. Besides 

NHI data, exploration continues for other reliable data sources to understand the health and 

medical utilization of Taiwanese residents at the county and township levels. Additionally, this 

study employs an isotropic kernel function in the GWR. However, Taiwan’s central mountain 

range may introduce direction-dependent (anisotropic) spatial properties in mortality patterns. It 

remains advisable to compare analysis outcomes using both isotropic and anisotropic models. 
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